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ABSTRACT

The "Westland" set of empirical accelerometer helicopter data with seeded and labeled faults is analyzed with
the aim of condition monitoring. The autoregressive (AR) coefficients from a simple linear model encapsulate a

great deal of information in a relatively few measurements; and it has also been found that augmentation of these
by harmonic and other parameters can improve classification significantly. Several techniques have been explored,
among these restricted Coulomb energy (RCE) networks, learning vector quantization (LVQ), Gaussian mixture
classifiers and decision trees. A problem with these approaches, and in common with many classification paradigms,

is that augmentation of the feature dimension can degrade classification ability. Thus, we also introduce the Bayesian
data reduction algorithm (BDRA), which imposes a Dirichlet prior on training data and is thus able to quantify
probability of error in an exact manner, such that features may be discarded or coarsened appropriately.

1. INTRODUCTION

Qualtech Systems has developed a suite of fault-isolation tools (TEAMS) that can, in real time and based on binary
sensor data, isolate single and even multiple faults in complex systems. However, many sensors (for example, of

vibration) are incapable of reliable decision-making on their own, and hence it has become necessary to develop
a (real-time) signal processing "front-end" to the TEAMS inference engine, whose goal is to render single- and
multiple-sensor level decisions as intelligently as possible. The signal processing system includes a wide menu of

spectral and statistical manipulation primitives such as filters, harmonic analyzers, transient detectors, and multi-
resolution decomposition.

The signal processing kit includes pattern classification software, including techniques based on restricted Coulomb
energy (RCE), decision trees (DT), learning vector quantization (LVQ), fuzzy logic, Bayesian data reduction (BDRA),
Gaussian mixtures (GM) and multi-layer perceptrons (MLP). At present the former three are implemented wit|fin
the SP toolkit, and the fifth and sixth are implemented off-line in MATLAB using features provided by the toolkit.

Recognition of faults can hence be automated provided there is sufficient training data. This paper thus includes
analysis of no-fault and seeded-fault vibration data from a CH-46 ("SeaKnight") helicopter aft gearbox as collected
from a test-stand. This data is made freely available through the generosity of the Penn State ARL. a

Results show promising fault detection accuracy, particularly when learning is based on auto-regressive (AR)
coefficient features. The analysis presented in this paper is an outgrowth of that in. 11'12 In the first of these, only a
very abbreviated version of the Westland dataset was explored, and the RCE, LVQ, and DT schemes were discussed.
In the second and this paper the full dataset is used, and the set of classifiers is augmented by the GM and BDRA

approaches.

In section 2 we go into detail about the toolbox classification techniques: LVQ, DT, RCE, Gaussian mixture,
and BDRA classifiers. In section 3 we apply the signal processing and classifiers to the Westland helicopter dataset.
Similar to results reported elsewhere, we find near-perfect fault-recognition accuracy, in our case with relatively small
feature sets involving autoregressive coefficients. We are encouraged by the success of tim BDRA in its automatic
digestion of the large number of features down to a relative few, and that these overlap significantly with the
"accepted" ones.



2. THE CLASSIFIERS
Weofferin thefollowingabriefdiscussionoftheSPtoolbox'sclassificationcapabilities.

Figure 1. Illustrationof classifierapproximationviatheRCEapproach.TheclasseslabeledA,B, andC,can
generateobservationswithintheindicatedshadedregions.Theactualtrainingobservationsaregivenbydotsor
smallsquares.Theapproximatingcirclesareshownalso.

2.1. Restricted Coulomb Energy Classification
At fundament,theRCEclassifier4'9reliesontheapproximationof a decisionregionviaa unionof hypersphere
"cells",asillustratedin twodimensionsin figure1. Cellsmayoverlapif theydonotbelongto thesameclass,
andthismayproduceambiguousoutputs.Notethatpartitionoftheobservationspaceintodecisionregionsisnot
exhaustivein tileRCEapproach.

Trainingof anRCEclassifieris of courseiterative,with thetrainingdatasetscycledrepeatedlyastraining
"epochs".Trainingisasfollows:

1. Randomlyshuffletrainingdata.
2. Consideratrainingdatapoint,andfindthosehypersphereswhichcontainit.

(a) If therearenone,theninitializea newcellcenteredat that datapointandhavinga (pre-specified)
maximumradius.

(b) If acontaininghypersphereisassociatedwiththecorrectclass,thendonothing.
(c) If acontaininghypersphereisofanincorrectclass,thendecreaseitsradiustocorrectthis.

3. Repeattheaboveforalldatain trainingset.
4. If thetrainingepochhasresultedinchangesneitherin hyperspheremembershipnorinmodificationofhyper-

spherenumberor radius,stop.Otherwisereturnto 1.
Wearenotawareofa proofof convergenceofRCEtraining,butwehaveobservednolackofconvergence.

Afterthenetworkhasbecomefixedclassificationisaccomplishedbyinterrogationofmembershipof thevarious
cells:eachcellis assigneda class,andtheoutputcorrespondsto that class.Forthecasesthat datais eithera
memberofnocell,orofseveralwhichareofdifferentclasses,theRCEclassifiergivesanindeterminateoutput:such
cases may be decided randomly or by heuristic.

The RCE classifier appears to be a good choice when the classes are separable (i.e. an ideal classifier would operate
without error) and when there is sufficient training data that separation is possible. This is similar to simpler setups
such as linear and quadratic discriminant analysis1°; but whereas those techniques must have decision boundaries

either hyperplanar or hyperellipsoidal shells, the RCE decision regions can be quite weirdly-shaped and non-convex.



' I +\ 0
] _ '\ i

y,"

i .// l ! _ i 0
i

-" iI
/ i i

l n m \

!

Figure 2. Illustration of classifier approximation via LVQ approach. Training observations are denoted as stars,

boxes, or circles, depending on class. Subclusters are formed for each class, and the centroids for each are represented
as_.

2.2. Learning Vector Quantization Classification

The LVQ classifier s is a variation on the traditional cluster-classifier based oil K-means trainingJ ° In essence, each

class is assigned sub-clusters defined by their centroids (see figure 2), and data are classified based on the membership

of the centroid to which they are nearest.

Training of an LVQ classifier must proceed from an initial "guess" at cluster centroids; this may be from K-means.

Thereupon consider training datum xi, which is of class C(xi) and is closest to centroid #j: if the membership of #j

is also C(xi), then we update in the direction of the new data

and otherwise in the opposite direction

#jnew. = y,._ad _ _'(Xi -- /Aj°id_) (2)

Generally _? is decreased from epoch to epoch. Eventual convergence is assured here provided _ is sufficiently small,

but in practice training is ceased when changes become insignificant.

In our implementation clusters are never created, but may be merged. After cessation of training (as above),

successive pairs of common-class clusters are testing for the appeal of their combination: for the proposed super-

cluster a new mean #* and "radius" R* are calculated, the former being the usual centroid and the latter the greatest

Euclidean distance from the centroid to a member point. If this radius is less than a distance fl to the nearest centroid

not in the current class, then the merge is accepted, and otherwise it is not. Typically we have .33 _< 17 < 1.

An LVQ classifier may be considered a development on the earlier K-means based cluster classifiers in that

non-separable classes cause no intrinsic, and in that there is an intelligent means of "pruning" clusters.

2.3. Decision Tree Classifier

At core the DT classifier m produces its output by asking a series of questions which must have binary answers. These

queries, for instance "Is feature 2 greater than 7.53?" may be based on previous answers, and each must interrogate

one feature alone. The "path" taken may t)e thought of as traversal of a logical tree; but the form of the resultant

decision regions must be as hyper-rectangles, as illustrated in figure 3.

In principle it is possible and easy to separate the training data precisely via a sufficiently-rich question set. In

practice there are too many "questions" (parameters), and the DT classifier is found not to have a particularly good

generalization ability. There are a number of means to limit the number of questions, and these generally amount

to the choice of a cost to be placed on a question's posing. In our implementation we use an information-theoretic

cost function, although admittedly its basis is empirical rather than true prior statistics.
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Figure 3. Illustration of classifier approximation via DT approach. Training observations are denoted as stars,
boxes, or circles, depending on class. Subclusters are based on answering yes/no questions, and hence must be
hyperorectangular - in two dimensions, they must be rectangles.

Figure 4. Illustration of classifier approximation via Gat_sian mixture approach. Training observations are denoted
as stars, boxes, or circles, depending on class. Ellipses denote regions of support of Gaussian mixture elements.

2.4. Gaussian Mixture Classifier

This classification technique has a greater statistical grounding than the previous, in that a probability deusity

function (pdf) is sought for each class. The specific pdf used is a mixture of multivariate Gaussians:

/(x) = +++_e-_t×-_,,] n-'[,,-_+,1 (3)
i=+l 1,+i+*,++l

and the idea is illustrated in figure 4. There are M elements to the mixture, and each has a different mean Pi
and prior probability ui. Decisions are made according to the maximum posterior probability of each class (in fact,
classes are assumed to be equally-likely a-priori). Note that if M -- 1 this is identical to the quadratic discriminaut
classifier.



Trainingis viatheexpectation/maximization(EM)algorithm.1° ThecorrelationmatrixR iscommonto all
elementsofthemixturewithinaclassoffault- thisisknownasa "homoscedastic" mixture - and the ideas behind this
are that the number of elements to be estimated can be reduced and that there is little concern about unboundedness

of the likelihood function. A variant of the above restricts R to be diagonal; this reduces the number of parameters
to estimate considerably, but in this particular case (see, for example, figure 6) the ability to "tilt" the pdf level

curves arising from the use of a full R is valuable.

Figure 5. Illustration of approach to classification via BDRA.

2.5. BDRA Classification

The Bayesian data reduction approach is perhaps the most statistically defensible of the classifiers used. It begins
with a quantized version of the data, and assumes a Dirichlet prior (of complete ignorance) on this a priori, for
each fault class. From that prior distribution classification is relatively simple; the key is that the prior enables an
explicit (and correct) probability of error to be calculated, and thence features may be pruned in an optimal way -
this is illustrated in figure 5. The BDRA is discussed in detail in, 6 among other places. Generally the BDRA works
very well when there are too many features for the training data to support, and/or when the classes are not easily
separable.

The BDRA requires that the data be pre-quantized. To some extent this is not a concern, since the quantization
may be as fine as desired - the BDRA coarsens the quantization as part of its feature/level selection. For practical
reasons, the quantization cannot be too fine, and hence it is not expected that this dataset will be kind to the BDRA.
In fact, the BDRA results are reasonable, but what is interesting is its ability to select features and its prediction of
its own performance.

3. RESULTS

3.1. The Data

In the early 1990's the US Navy contracted with Westland, a British helicopter manufacturer, to develop and study
vibration signatures for the CH-46 (SeaKnight) aft gearbox. Essentially this is "test-stand" (not in-flight) data;
this is a disadvantage from the perspective of result reliability, but offers a distinct advantage in that the vibration
signatures are labeled. The data is as follows:

• There are 68 files each containing data traces of 100,000 samples.

• For each case there is data available from eight accelerometers.

• There are a total of nine fault conditions, ranging in severity from mild to severe. Faults were "seeded" (by

electronic discharge milling) in the sense that parts with known defects were installed and de-installed.

• There is data from no-fault (normal) operating conditions.

• Data was observed at nine different torque levels (since this is a rotorcraft, angular velocities are relatively

constant), ranging from 27% to 100%.



Fordetailsonthefaults,etc.,pleasesee.l's Notethatif all faultlevelsandtorqueswererepresentedtherewouldbe
90files;in fact,anumberofconditionsareunrepresentedin thedata.Asregardstrainingversustesting,theentire
datasetissplitrandomlyintotwoparts,whichareusedseparately.

Thedatahasbeenanalyzedpreviously(e.g.1713)usingavarietyofclassificationtechniquessuchasmulti-layer
perceptronsandfuzzyreasoning.Indeed,thisis apparentlyan "easy"(orseparable)data.setfor classification,as
thereportedaccuraciesapproach100%.Thus,ourgoalhereisnotreallytobeat previous (unbeatable!) approaches,
but to attempt to match them using the SP toolbox classifiers. Further, it appears that past approaches have often
used a rather dense feature set (several hundred features, such as FFT outputs), and we attempt here to use a much
sparser arsenal.

3.2. The Features

3.2.1. AR Coefficients

It is possible to use periodogram outputs explicitly as features for classification; however, in general this implies
a great many features, and the usual "curse of dimensionality" may ensue. Since it is clear that spectral features
do indeed yield much relevant information, we propose to use a concise way of representing the spectrum: the

autoregressive (AR) parameters. 2 These are estimated on blocks of various sizes, from N = 256 to N = 16384.
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Figure 6. Scatter plot of AR coefficients al versus a2 (out of p = 4 AR coefficients), for accelerometer 3 and
combined over all torque levels, estimated on blocks of length 4096, for faults 3, 5, 8 and no-fault conditions.

Examples of AR coefficients are given in figures 6 and 7. It is clear that there is a reasonable amount of structure
to these, but also that certain conditious cannot be separated reliably using only such data. In fact, there are 8
accelerometers from which to choose, and a further two AR coefficients.

3.2.2. FFT Features

AR coefficients are able to digest much global spectral information into a small dimension. There is some indication
that faults may manifest in specific frequency behavior, and hence we additionally investigate the use of relative
harmonic power (RHP). The i th RHP is the ratio of the ith-highest spectral peak (measured via FFT) to the average
power. In the sequel we use 4 RHP's. The idea is illustrated in figure 8, and examples are given in figures 9 and 10,
for the same conditions as figures 6 and 7. It is clear that these features are less a direct indication of fault class.

3.3. Results for RCE, LVQ and DT

We first examine the results for the case that accelerometers are used individually. The features used are AR
coefficients of order p = 4, each estimated on a block of length N = 4096. Results are reported in table 1. None of

these performances is acceptable, although accelerometers 3,4, and 7 appear to be the most promising. Motivated
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Figure 8. Illustration of extraction of relative harmonic power coefficients.

by this, we attempt to classify by combining accelerometers. Example results are shown in table 2. We find that
the combination of accelerometers 3 and 7 is the most propitious. There is apparently little benefit from using all
accelerometers.

In table 3 we explore the choice of AR order. The results indicate that p = 4 is a good compromise between
sensitivity and dimensionality. With this choice we consider adding the RHP features. In table 4 we do, and
additionally compare the results for different block lengths. The results become quite outstanding in the cases
N = 4096 and N = 16384, particularly for the RCE classifier; the LVQ classifier is somewhat less satisfying, and the
DT scheme has been overcome.

Finally, we note that we have chosen to ignore the torque level in our classification feature set. That is, we
have trained using combined data from all torque levels, and results to this point are given in terms of combined

probability of correctness. It could be argued that this is dangerous, in that poor performance may lurk at some
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torque level; in fact, as seen in table 5, this is not the case.

3.4. Results for GM

We show example results for the two homoscedastic GM classifier variants in figure 11. Apparently the GM classifier

is not as good as the RCE scheme in this situation; GM classifiers are often more useful when the data is less

separable and when confidence information is desired, so it is perhaps interesting that the performance is as good as

it is. Of particular note is the M = 1 GM classifier - this is essentially a quadratic discriminant, and its probability

of error is very low.

As regard the second GM classifier variant that with a diagonal covariance matrix - it is interesting to observe

from figure 11 that the performance improves markedly as the number of mixture elements M is increased. There

is some explanation of this in figure 12, in which the "coverage" of one class's data by the mixture elements is

illustrated. It is clear that the more elements, the more complete the coverage.



Table 1. Percentage of correct classification for three classifiers, versus acceIerometer number - features are
4m-order AR coefficients from individual accelerometers.

ace RCE LVQ DT

Table 2. Percentage of correct classification for three classifiers, with combined accelerometer AR coefficients
(p --- 4) from individual accelerometers as features. (In the last row p = 2.)

3.5. Results for BDRA

In table 6 we show the results for the BDRA in terms of correct detection of a fault condition - no attempt is made

here to isolate the fault, but testing is simply binary. Despite the fact that the BDRA is not particularly well-suited
to the problem, the results are quite good. It is particularly notable that the algorithm is able to predict its own
performance with reasonable fidelity.

As indicated earlier, a strength of the BDRA is that it is able to determine for itself a feature set. In fact, it is
originally "given" a the entire set of features, quantized to whatever fineness is desired - in table 6 this is 5 or 10
levels per feature, thresholded for equal probability, meaning in the case of 10 levels and p ----6, there are initially
8 × (6 + 4) × 10 --= 800 possible observations. In table 7 the final quantization from the BDRA is shown, and the
dominance of acceIerometers 3 and 7 is clear. Table 7 deals only with AR coefficients: if RHP features are also

presented to the BDRA, it turns out that these are often chosen.

The BDRA is capable of multi-class operation, although in the paper 12 that shares much in common with this
one, this feature was not implemented there. In table 8 we see results for this operation (with mixed-torque data),
and it is clear that the BDRA is able to ascertain the error classes with surprising accuracy. However, note from the
earlier figures 6 and 7 that the AR coefficients are in fact strongly correlated with each other, and tend to cluster
in highly eccentrically elliptical regions - the BDRA is not particularly suitable for this sort of case. However, by a
simple "whitening" pre-processing operation (actually, estimation of a common correlation matrix R for all clusters,
similar to the Gaussian mixture classifier with M = 1 mode, and multiplication of the entire data set by R-1/2), the

performance is clearly much improved. A confusion matrix is shown in table 9, and performance clearly is reasonable:
the exceptions here relate to class 3 (in fact, "Input Pinion Bearing Corrosion") which appears to be similar to many
other faults; and to class 2 ("Planetary Bearing Corrosion") which is so under-represented in the data that it cannot
attract a decision.

Table 3. Percentage of correct classification for three classifiers, with combined accelerometers 3 and 7, for various
AR orders p, estimated on data blocks of length N = 1024.
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Table 4. Percentage of correct classification for three classifiers, with combined accelerometers 3 and 7, for variotks
AR orders p = 4 estimated on data blocks of length N. The feature set is augmented by the RHP spectral peak
clues.

torque RCE LVQ DT

Table 5. Percentage of correct classification for three classifiers, with combined accelerometers 3 and 7, for various
AR orders p = 4 estimated on data blocks of length N = 4096. The feature set is augmented by the RHP spectral
peak clues. Training data is combined over all torque levels, and testing is done individually at each torque level.

4. SUMMARY

Here we have reported on a signal processing toolbox specially matched to Qualtech Systems TEAMS diagnostic

inference engine, and in particular on its classification capability as applied to the "Westland" data set. We have
found that essentially perfect diagnostic performance is achievable via the use of AR coefficient features augmented by
harmonic peak information. The best classification performance appears to come from the RCE learning/classification
scheme. The approach works well across all torque levels, so there is no need to supply engine load information to the
classifier. We have also found that the Bayesian data reduction (BDRA) approach, despite not being well-matched
to the problem, works surprisingly well, and indeed that its ability to select features (perhaps for other classifiers?)

is particlflarly promising.
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I N I pl C_s [ _ J C_0____ j

1024 4 94.9195.4194.3 94.9
1024 6 94.5 96.3 94.0 94.1
4096 2 93.9 98.9 96.5 98.8
4096 4 94.4 96.3 95.4 98.3

]409616192.2 [91.3[93.8 98.0

Table 6. Percentage of correct fault detection for BDRA, using AR(p) coefficients and RHP clues. Subscript of C
denotes number of initial quantization levels per feature; superscript a means actual, and t is theoretical.
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